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ABSTRACT 

There are derived sufficient conditions for the posltivity 

of Green's function of two-point boundary value problems of the 

fourth order. The results are gained by applying a theorem on 

Inverse-monoton o operators In partially ordered spaces. In the 

case of an example (beam on elastic support), the derived 

conditions are also necessary. 
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1.    INTRODUCTION 

Let there be given a differential equation 

L[u] = a^(x)uIV+...+ a]L(x)u» + a0(x)u = r(x)    (O^x^l), (1.1) 

together with four linearly independent boundary conditions 
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I 
k=0 

Uju] =2aiku(k)(0) = 0 (i = l»2), 

vju] = 2Aku(k)(1) = 0 (1 = 1,2). 

k=0 

(1.2) 

Suppose that the coefficients    a.(x)    are continuous and that   a,(x) 

is positive in [0,1]. 

The corresponding Green's function   G(x,0    exists and 

satisfies 

a(x,0   > 0      (0^x,C <1) 

if and only if for each   u c C, [0,1]    the following is truei    The 

relations 

L[u](x)  > 0     (O^x^l) 

Uju] = 0     (i = 1,2) 

V^u] = 0     (i = 1,2) 

imply   u(x)  ^0    (O^x^l). (1.3) 

This paper yields sufficient conditions for this property. 

We need some more restrictive conditions concerning the differenti- 



ability of the coefficients   B.AX)    which differ from case to 

case.    For simplicity, we will assume that the coefficients are 

analytic.    We then need prove (1.3) only for analytic   u(x).~ 

Results which require weaker assumptions can be gained by a limit 

procedure. 

For second order boundary value problems, the corresponding 

property has been treated by several authors.    Most of the proofs 

use the fact that the first and second derivatives of a function 

have to satisfy certain necessary conditions at a point where this 

function assumes a relative extreraum.    These conditions are used to 

derive contradictions.    There is no straightforward generalization 

of such methods to fourth order problems because nothing can be said 

about higher derivatives at an extremum.    Thus, the proof has to be 

different. 

But also the facts are different.    For example, the Green's 

function of the problem 

-u« + cu = r(x)        (0 ^ x ^1), 

u(0) = u(l) = 0 

2 
with constar.-   c   is non-negative for all   c > -TT ,  while It does not 

exist for    c = -TT     (eigenvalue) . 

The Green's function of the problem 

uIV + cu = r(x)        (0 £ x < 1), 

u(0) = u"(0) = u(l)  = u"(l) = 0 
(1.^) 

HaNMW mur  'M 
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with constant o exists for c > -TT . It Is non-negative for 

a certain c-Interval -n < c ^ e0i but for no larger Interval. 

The occurrence of such an upper bound for the coefficient c(x) 

Is typical for fourth order problems. For our example (1.4)» this 

behavior Is plausible because of the physical meaning of the 

problem (see Section 5). 

There have been treated some "trivial" cases of fourth order 

problems, such as 

L[u] =uIV = r(x)    (O^x^l), 

u(0) = u"(0) = u(l) = u"(l) = 0. 

This problem can be split Into two second order problems I 

(1.5) 

-v" = r,    v(0) = v(l) = 0. 

-u" = v,    u(0) = u(l) = Oj 

and the conclusion ist r(x) ]> 0 ■• v(x) ^ 0 * u(x) ^0. This simple 

splitting with v = -u", however| cannot be used In more general 

cases, for example, neither for the problem (l.A) with c > 0, 

nor for the differential equation (1.5) and the boundary conditions 

u(0) = u'(0) = u(l) = u»(l) = 0. 

In Section 2, we generalize the method of splitting Just 

mentioned, and then apply a general theorem 

J. Schröder!    Monotonie-Eigenschaften bei Differentialgleichungen, 
Arch, Rational Mech. Anal. 1^, 38-60 (1963). 
See alsot    Differential Inequalities and Error Bounds, Dl-82-042^, 
Boeing Scientific Research Laboratories, Seattle, Washington (1965) • 
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on inverse-monotonic operators to the split problem.    The 

behavior of the splitting at the boundary points is very important 

(Section 3)*    The resulting theorem (Section 4)  contains sufficient 

conditions for the property (1.3) which can be checked in each 

particular case if a splitting is given.    These conditions turn out 

to be necessary in case of the exainple (1.^)  (Section 5). 

In a later paper different sufficient conditions will be 

derived from the theorem.    These conditions will suggest 

how to choose an appropriate splitting.    The connection to necessary 

conditions will also be discussed in the later paper. 

2.    SPLITTING OF THE DIFFERENTIAL TERATQR 

In this Section 2, we first consider the operator   L[u]    in the 

open interval   (0,1) ,  to  avoid lengthy considerations concerning the 

boundary behavior of certain functions.  All functions which occur, as 

u(x), p.(x),...,  shall be defined and analytic in (0,1).   A function 

of this kind is called positive if it has values    >0 for    0 < x < 1. 

We will derive second order differential operators 

Ljju] = p2(x)u" + p1(x)u' + p0(x)u, j 

L2[v]  = q2(x)v" + q^xW  + q0(x)v 
(2.1) 

with 

p5(x)  < 0,      q0(x)  ^0 (0 ^ x < 1) (2.2) '2^'   v  ^      ^2 



such that in the Interval    (0,1) 

L2[L].,uJ] = w(x)[Uu] + q(x)u] (2.3) 

for all (analytic)     u(x),    and some fixed functions   q(x)    and 

w(x).    The inequalities (2.2)  imply 

w(x) > 0     (0 < x <1). (2.^) 

I 

. Such operators   I.,    and   L?   are said to split the operator 

L   in the interval    (0,1),    or to form a splitting (2.3)   in the 

interval    (0,1). 

For convenience, we use the following notations» 

.x a, (?) 
a = 

i 

a. 
b = a" -a-^, 

ß = b' + a — . 
&, 

c = a a, 

The operator L[u] can then be written in the form 

L[u] = -^ [( au")" - (bu«) ' + ßu« + cu] (2.5) 

Lemma a)      To each positive function   p( x), 

p(x)   > 0 (0 < x <1), (2.6) 

and each constant   Y, there   corresponds a splitting (2.3)  in the 

open interval: 

fMBnAHi|iMttfcN(|0g|^|l| 



Ljju] = -apu" + ap'u« + (P0 + Q0 + Y)u, (2.7) 

L2[v] = -apv" + ap'v« + (P0 - Q0 - Y)v (2.8) 

with x 

Pn = 4(ap') ' + ibp,      Qn = -if   ß(5)p(5)dC. 
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The corresponding functions w and q are given by 

a^w = a p , (2.9) 

a2p2q = a^(F-acp2) (2.10) 

with 

F = f + g, 

f = -apPJ + ap'P-j + P2 

g = -apQJ + ap'QJ - (QQ + Y)2 . 

A splitting of this kind will be called a normal splitting. 

b) For every other splitting (2.3) in (0,1) the operator L, 

can be gained by multiplying the correspending operator of a normal 

splitting by a function which Is positive In (0,1), and the 

corresponding function q Is Identical to the function q belonging 

to that normal splitting. 

PROOF;  Each triple of functions p,..p.,p  with negative Pp(x) 

can be written In the form 

P2 = -up,   p1 = wp',   P0 = "PQ (2.11) 

■mMwrmiini 



with positive fvinctlons   p(x)    and   w(x). 

For a given   u,    define 

V(x) = p0u + p'u - pu",      v(x) = ^[uJCx) = w(x) V(x); 

and let    u(x), 55(x), ü(x)    be the vectors 

u = « = 

We then calculate' 

«T = UTV,        ÖT =   «TQ=  UTfto 

0 = 

with the matrices 

^ = 

'0 Po 

-p 0 

0 -p 

0 0 

P'O 

P'      p0 + p"     apj + p'" 

PO + P"   I, 

-pi 

-p 

Q = 

"The superscript T denotes the transposed matrix, respectively, 
vector. 

—      -•• #   H       Mj MWIillHMia 
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Moreover, using the notations 

a = ,   « = = Qq 

we vrite the relation (2.3) as 

0 = 

uT^q= uT(w[a + qe])        (0 <x <1). 

t = (2.12) 

This equation is satisfied for all (analytic)    u(x)    if and 

only ifi 

^q = w(fl + qe) (0 <x <1) . 

For given p, p  and w, this last relation is a system of 

five linear equations for the unknowns cL, q,, q? and q. The 

last three equations yield 

, j = ^ . 0 
-D" - Jo 

(2.13) 

Inserting these values of the    q.   into the second equation, we 

g-jt the compatibility condition 

2a^pJ + a3p0 -f  [a^ + a^* + a3p" + a^pm^ = 0 (2.U) 
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Finally, the first equation leads to 

p2q = (p0,p',pj) ( 0   a^   «3 I I P'      I "V2 *  (2-15) 

For   ij=a     and   w   as given in (2.9) we get the normal splitting 

(2.7),  (2.8).    A different choice of   u    and   w   changes    LJu] by a 

positive factor while    q(x)    in (2.15)  remains unchanged. 

Example      The function 

yitlds a normal splitting with 

x 

Lju] = -au" + (fb - ^ /    3(0d? + Y\ u 

\   -({^-rf]  " • f-q(x)  = 4a(b"  - ßi)  + i i    - -(    /   pd? - 2Y]   |    -ac    . (2.16) 

! 

These arguments show, that those operators   L, ,1-,    and only those 

operators, form a splitting (2.3)  in    (0,1)    that have coefficients which 

satisfy relations of the form (2.11)  through (2.15).    Because of (2.1^),  the 

function   p      is determined by   p    and an integration constant   Y. 

Thus, three positive functions   p(x), u»(x), w(x)    and a constant   Y 

determine a splitting (2.3). 

! 

p(x)  =1 

and 
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3.    THE BOUNDARY BEHAVIOR OF A SPIJTTIMG 

From now on, we consider only functions which are analytic 

In the closed interval    [0,1].    We will say that two operators 

I«, L2    (2.1)   form a splitting (2.3) .of   L    in the closed interval, 

if (2.3)  is true for    0<x<l    and if (2.2) is satisfied for 

0 < x < 1.    Under the present assumptions concerning the coefficient 

functions, each splitting in the open interval is also a splitting in 

the closed interval. 

Moreover, we will assume, without loss of generality,  that the 

boundary operators    U., V.    in (1.2)   have the following form: 

Ui[u] =2 aiku(k)(0)'        VifuJ = V ^iku(k){1)       (i=1'2) {3A) 

k=0 k= 0 

with 

^1 < ^ 3'       alh = %2 
= ^        ^ = 0' 

UL < u2 < 3,       t       = ß       = 1,       ß o. = 0. 
1        -"2 

The set of functions which are analytic in    [0,1]    and which satisfy 

the boundary conditions is called    R. 

Suppose now that there is given a splitting (2.3)   in the closed 

interval.    Let then   oi t or.,  ßn, ß,     denote the largest Integers such 

that for all    u e R    and the corresponding    v = L,[u],    respectively: 

u(1)(0)  = 0 (i=0,l,2,...,a0-l), 

u(i)(l) = 0 (i=0,l,2,...,o1-l), 
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v(i)(0) = 0 

v(i'(l) = 0 

(1=0,1,2,...,ß0-l), 

(l=0,l,2,...,ei-l). 

(3.2) 

Clearly, 

ao = 

0 if     ^ > 0 

1 if     ^ = 0, ii2 > 1 a1 = 

2 if     H-L = 0, ii2 = 1 

0 if      ^ > 0 

1 if      v^ = 0, v2 > 1 

2 if      v1 = 0, v2 = 1 . 

It is important how the boundary values of the derivatives of 

u e R   are connected with the corresponding derivatives of 

v = L-, [u].    This connection will be described by "boundary matrices". 

It is sufficient to consider the boundary point    x = G.    For 

each   u e R    the derivatives    v      (0)    are finite linear combinations 

of the derivatives 

(kj (kj 
u    MO),    u    MO)    with    0<k1<k2^A;    k./^    (i,j=l,2). 

and the derivatives 

J 
L(j)[u](0)   = (^L^A (0)      (.1=0,1,2,...), 

,(k) because the other derivatives   u      (0)    with    k < A    can be eliminated 

using the boundary conditions.    In matrix notation,  these relations can 

be written as 

(IHlK-Ä) 
" 
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with 

v( 0      I        / Jß0) 

v'(0) 

öo = 

ö J (o) 

b0 = |   (eyi) 

v 0  (0) 

(3.3) 

u 1 (0) \        f L[u]0) 
U0=l  (k)    I     'oML'MO) 

u 2 (0) 

Because of the definition of ß  in (3.2), all elements of the 

matriers 9L and @  vanish; there is, however, at least one nonzero 

element in the first row of JH0 or in the first row of @n. 

The matrices 9? , @  shall be called the Boundary Matrices 

at x = 0. 

The corresponding boundary matrines 91,, @, at x = l are constructed 

by applying the same procedure to u, v, X = L[u] as a function of 

X = 1-x at X = u The boundary matrices are infinite. However, we 

will only need a finite part in each case. 

Example  In case of the boundary conditions 

u(0) = u"(0) = u(l) = u"(l) = D 

we have ot,..  = or, =1. For the normal splitting with p(x) 5 1 (see 

the example in Section 2) one derives the following relations at x = 0: 
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-, *mmit*Uf'" 

i^b-i'ß+Y     -a 

0 0 
n 

with   'ß =  r ß(C)d5.    From these relations,  the first two rows of 

the boundary matrices  9Jn>   @n    can readily be obtained.    Because 

of   a > 0    we get    ß0 = 1    (and similarly    ß    = 1) . 

■ 

'     ■   ■ ■"        .    ,: 
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A.    SUFFICIENT CONDITIONS 

Suppose there is given a splitting (2.3)  in the closed interval; 

and let   JH-, ^n» ^l'®!   be t'lle c01,1*63?011^1^ boundary matrices.    As 

before, let   R   denote the set of analytic functions on    [0,1]    which 

satisfy the boundary conditions. 

For vectors  u = (u )     of any finite or countable dimension we 

define two order relations: 

U 2 0    iff 
u    > 0   and 

u    > 0    in case    u   = u   =  .. .u ~    =0,      (i=2,3>..'») 

U Vo    iff u1 > 0. 

Using these notations, we can state the basic theorem: 

THEOREM: 

a) Let the coefficient    q(x)    of the given splitting (2.3) be 

nonnegative: 

q(x) > 0       (0 <: x <1). u.i) 

b) Suppose that for arbitrary vectors     u, Ö, (      of suitable 

dimensions the relations 

o = <R0U + @0r 

u > 0,   0^0,   ( >0 
imply  uyOy    t> yo (£.2) 

and suppose that the same statement is true for    91 -i» (O-,    instead of 

*o'%- 



. 
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Thent for arbitrary functions   u c R    the relation 

L[u](x) > 0    (0^x<l)    implies 
u(x)  > 0 (0 ^ x < 1) 

LjuKx) ^0   (0 ^x^l) 
(A.3) 

if and only if there exists a function    z c   R    such that 

L[z](x)  > 0 (0 < x < 1), 

z(x) > 0,        L-JzKx)  > 0 (0 £ x < 1). 

PROOF;      We first prove that the conditions U.4) >  (A.5) are 

sufficient provided the assumptions a)  and b)  are satisfied. 

U.5) 

For this, we apply a theorem    on abstract operators    M   mapping 

a partially ordered space    R   into another partially ordered space   S. 

Let   R = {u,v,...}    be as above and define 

S = {U,Y,...} = C[0,1], 

Mu = L[u](x). 

Define, moreover, for u e R, U • S, respectively! 

u > 0:  iff 

u(x) > 0   (0 < x < 1), 

v(x) > 0    (Oil x < ); 
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u(x) > 0 (0<x<l), v(x) > 0        (0<x<l)l 

u>.0»lff(u    U (0)  > 0, v    ü(0)>0, (^.6) 

(-1)  ^    1 (1)  > 0 (-1)  \   1 (1) > 0, 

where   v = LjuJCx)    and the indices   aQ, ß0, a.t ß,    are given 

in (3.2); 

U > 0      i      iff     U(x) > 0    (0 < x ^ 1); 

U >0      i      iff     U(x) > 0    (0 < x < 1). 

Then the conclusion (4..3) in the theorem is equivalent to 

Mu > 0  implies  u > 0   (u e R). 

According to the abstract theorem mentioned above, this implication 

is true if the operator   M    satisfies the following two conditions: 

It    The inequalities 

u > 0      and      Mu ^-0 

together imj-ly 

u yo. 

Ill    There exists    z c R    such that 

z > 0,    Mz X 0. 

The inequalities in Assumption II are equivalent to the 

relations (A.A)»  (^••5).    Therefore, we need only prove that 

Assumption I is satisfied. 
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I 

Suppose Assumption I is not satisfied.    Then, there exists 

u c R   such that 

u(x) ^0 (O^x^l), 

v(x) = ^[ujlx)  ^0 (0 ^x^l), 

L[u](x) > 0 (0^ x^l), 

U.7) 

but one of the inequalities on the right-hand side in (A.6)  is false. 

Suppose    v(x0)  = 0   for some    x0 c (0,1).    Then,    v(x)    is 

minimal at    x0   and therefore    v'CxJ  = 0,    v"(x0)  > 0,    so that 

L2[v](x0)  = + p2(x0)v"(x0)  < 0. 

On the other hand, 

L2[Y](X)  = w(x) [L[U](X)   + q(x)u(x)l   > 0 

because of (2.3),  (2.A),U.1),  U.7) | thus,    v(x0) = 0   is not 

possible. 

If   u(x0)  = 0   for some    x- c (0,1)    we get in a similar way 

LJUKXQ)  < 0,    while, however,    L-^UJUQ) = v(x0)   > 0.    Thus, 

u(x0)  > 0. 

Consider now    x = 0.    Because    v(x)    is nonnegative,  the 

nonvanishing derivative   v     (0)    of lowest order   1   must be non- 

negative.    That means,  the vector    fc-    in (3.3)  satisfies    0n ^ 0. 

Pbr similar reasons the vector    iu   in (3.3)  satisfies   un > 0. 
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Moreover, the vector |  In (3.3) Is ^0 because of U.7). 

Therefore,  U- V 0» •n ^ 0 as a Oonsecluence 0^ Assumption b). 

These Inequalities are equivalent to the Inequalities in (4..6) 

which are required for x = 0. 

In a similar way, one proves the remaining inequaliwies in 

U.6). 

Thus, Condition I is satisfied and we have proved that the 

existence of z is sufficient. It is, however, also necessary. 

Because, if {A.3)  is  true, the homogeneous problem corresponding 

to (1.1), (1.2) has no nontrlvial solution. Therefore, a solution 

of (1.1), (1.2) exists for r(x) a 1, and this solution z 

satisfies (4..5) because of (^.3). This proves the theorem. 

Corollary:   Suppose, the Assumptions a, b of the Theorem are 

satisfied for a certain normal splitting L,, L?. Then, they are also 

satisfied for each splitting L,, L« such that 

L^u] = u(x)L1[u], 

with a function ü(x) satisfying 

w(x) > 0  (0 < x < 1). 

Concerning the proofi 

As we have seen in Section 2,  the function    q(x)    which 

occurs in Assumption a of Theorem 1 does not depend on the factor   u(x). 
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To prove that the Assumption b is also satisfied, one has 

to use the fact that 

/ 

\ 

u» 

w u  0 • . . 

u"  2u'  w 0 ... 
with v = uv. 

Example.      For the example which was treated in the preceding 

sections,  the Assumption U.l)  on    q   given in (2.16) yields an 

upper bound for    c(x). 

Assumption b) is always satisfied.    To prove (A.2), one has only 

to show that (A. 2) is satisfied for the sections 

91 0 ■( 

^b(O)  + Y        -a(0) 

0 0 ), v 0 
of the matrices   9L> @n   instead of the matrices   9L, ®n   themselves. 

This is done by a simple indirect proof.    In a similar way,  one can 

show that (A.2)  is satisfied for  Ä-,^   instead of  SR0,  C^. 

For illustratior and for simplicity, we choose a function    z 

with constant fourth derivative: 

z = x(l-x)[l + x(l-x)] 

This function yields 
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L^z] = x(l-x)Z 

with 

Z = a + (| - ^P + Y)(l + x(l-x)) 

and 

L[z] = 2^a+12bx(l-x)+ cz + 2a,z", + a" z" -(b'-ß)z,. 

Obviously, the conditions (4.4.)» (A.5) are satisfied if 

a = const. > 0, b = const. > 0,  ß(x) « 0, c(x)  > 0. 

In this case,  {A-l)  is equivalent to 

c(x)  ^^-b2      (0£x <1). 

However,  (A.A)  and (^..5) are also true if the coefficients are 

"sufficiently close"  to those just described. 

Modified   Assumptions.    The condition {U-U) can be weakened if 

(A.2) is replaced by a somewhat stronger assumption.    For exa.rr''* 

one may replace  (4. .4.)  by 

L[z](x)  > 0 (0 < x < 1), 

L'[z](0)  > 0     if     L[z](0)  = 0, (4.8) 

-L'[z](l)   > 0     if      L[z](l) = 0 

if (A.2) is required for all vectors I having the following property: 

I > 0;   X2 > 0 if X1 = 0. U.9) 
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In the proof, the definition of   U ^0   then has to be changed 

appropriately.    These modified assumptions often allow the choice of 

simpler functions for   z. 
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5.    JEAM Oll ELASTIC SUPPORT 

The statement (A.3)  of the Theorem is stronger than the 

Implication (1.3)  which we want to prove.    For the following 

example, however,  the existence of a splitting satisfying the 

assumptions of the Theorem turns out to be necessary for the 

weaker statement, also. 

Consider a beam of length    1    under a load   r(x) ,    fixed at 

both ends without bending moments,  and, moreover,supported along its 

whole length by an elastic medium with elasticity constant    c 

(Figure l) .    Under suitable assumptions concerning the physical 

data,  the deviation    u(x)    of the beam satisfies the equations 

ulv + cu = r(x)        (0 £ x < 1), 

u(0)  = u"(0)  = u(l)  = u"(l)  = 0, (5.1) 

as long as u(x) > 0 (0 < x £ 1).  In general, one has to replace 

cu by ^ c( |ul + u). 

Figure 1 
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For small c, the deviation u(x) will be nonnegative for 

arbitrary load r(x) > 0. For large enough c, however, and a 

load sufficiently concentrated near one end, one has to expect that 

the beam rises above its support near the other end, i.e. 

u(x) < 0 (see Figure 1) . 

What is the largest elasticity constant cn, such that for 

all c with 0 < c < c0 and arbitrary load r(x) > 0 the beam 

does not rise above its elastic support ? We will show: 

where K  is the smallest positive root of the equation 

tan k = tanh k 

It suffices to prove that (5.1) yields   u(x) ^0 (0 ^ x ^ 1) 

for arbitrary   r(x)  > 0 (0 < x < l)    if    0 < c < c ,    while this 

is not true for   c = c
n + e   with sufficiently small    e > 0. 

The Theorem of Section 3 can be used to prove that the condition 

0 ^ c £ cn   ^s s^ft-cien't'    Choose the normal splitting correspond- 

ing to (5.1) with    r = 0,    and 

p(x)  = sin K  [cosh 2tc(x-l5)  - cosh <]  - slnh K[COS »c  - cos 2K(X-4)]. 

Then,  the corresponaing function    q   in (A.l) vanishes Identically, 

a0 = ^ = 0'      ß0 = ßl = 3' 



Ik 

I -4PIV(O) 
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o 

o 

o 

o 

.|p'"(0)     0 

0 

0 

0 

■\ 

V- 
-8 p"»( 0)    0 "1 

IV where    p'^U)  > 0,    p    (0)  < 0,    and    *    denotes elements not needed 

explicitly.    These matrices (and also the corresponding matrices 

JR..,®.)     satisfy (4.2)   even if the requirement   I ^0    is replaced 

by (4.9). 

Therefore,  it is sufficient to  choose a function    z    which 

satisfies the modified condition (4..8) besides (4.5): 

z = sin nx . 

Because 

L[z] = (n    + c)   sin n x, 

the condition (4.8)  is satisfied if    c > 0   (and even for    c > -n ). 

Proving (4.5)  by elementary means is a little bit bothersome.    A 

following paper will show how such inequalities can be proved in a 

certain indirect way. 

The value    cn   described above ij indeed the largest value having 

the described properties, because the Green's function of the problem 

(5.1)  belonging to    o = 4k     satisfies the following relation for    x > 0» 

a(x,l-x)  = T- 2 sin k cosh k -cos k sinh k    2      nfy2\ 

cosh X   -   COS   K 
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2 
The coefficient of    x      is negative for    c = cn + e    with small 

For the special case ($.1)  the Green's function can be 

calculated explicitly, and it can be proved directly that this 

function is nonnegative for    -TT   < c < c..    For example,  one may 

show this for    c = 0    and then vary    c    continuously.    However, we 

have also proved,  that the Green's function is nonnegative in case 

!0 
of a variable coefficient    c(x)    satisfying    -TT    < c(x) ^ c 

(0 < x <1). 

. 

enough   e > 0. 


